home *** CD-ROM | disk | FTP | other *** search
- ASUM(3F) Last changed: 11-2-98
-
-
- NNAAMMEE
- SSAASSUUMM, DDAASSUUMM, SSCCAASSUUMM, DDZZAASSUUMM - Sums the absolute value of elements in
- a real or complex vector
-
- SSYYNNOOPPSSIISS
- Real
-
- _s_u_m == SSAASSUUMM ((_n,, _x,, _i_n_c_x))
-
- Double precision
-
- _s_u_m == DDAASSUUMM ((_n,, _x,, _i_n_c_x))
-
- Complex
-
- _s_u_m == SSCCAASSUUMM ((_n,, _x,, _i_n_c_x))
-
- Double complex
-
- _s_u_m == DDZZAASSUUMM ((_n,, _x,, _i_n_c_x))
-
- IIMMPPLLEEMMEENNTTAATTIIOONN
- IRIX systems
-
- DDEESSCCRRIIPPTTIIOONN
- SSAASSUUMM and DDAASSUUMM sum the absolute values of the elements of a real
- vector, as follows:
-
- n
- sum <- ||x|| = Sum |x |
- 1 i=1 i
-
- where _x is a real vector of length _n.
-
- SSCCAASSUUMM and DDZZAASSUUMM sum the absolute values of the real and imaginary
- parts of the elements of a complex vector, as follows:
-
-
-
- sum <- ||Real(x)|| + Imag(x)|| =
- 1 1
- n n
- Sum |Real(x )| + Sum |Imag(x )|
- i=1 i j=1 j
-
- where _x is a complex vector of length _n.
-
- These functions have the following arguments:
-
- _s_u_m Sum of values.
- SSAASSUUMM: Real sum of the absolute values of the elements of _x.
- DDAASSUUMM: Double precision sum of the absolute values of the
- elements of _x.
- SSCCAASSUUMM: Real sum of the absolute values of the real and
- imaginary parts of the elements of _x.
- DDZZAASSUUMM: Double precision sum of the absolute values of the
- real and imaginary parts of the elements of _x.
-
- _n Integer. (input)
- Number of elements in the vector to be summed. If _n <= 0,
- these routines return 0.
-
- _x Array of dimension (_n-1) * |_i_n_c_x| + 1. (input)
- SSAASSUUMM: Real array.
- DDAASSUUMM: Double precision array.
- SSCCAASSUUMM: Complex array.
- DDZZAASSUUMM: Double complex array.
-
- Array _x contains the vector to be summed.
-
- _i_n_c_x Integer. (input)
- Increment between elements of _x. If _i_n_c_x = 0, the results
- will be unpredictable.
-
- NNOOTTEESS
- These routines are Level 1 Basic Linear Algebra Subprograms (Level 1
- BLAS).
-
- When working backward (_i_n_c_x < 0), each routine starts at the end of
- the vector and moves backward, as follows:
-
- _x(1-_i_n_c_x * (_n-1)), _x(1-_i_n_c_x * (_n-2)), ..., _x(1)
-
- SSEEEE AALLSSOO
- This man page is available only online.
-